
Journal notes on Blaupunkt Berlin IQR83 restoration
• This power point contains random information I’ve collected while restoring and

modifying of my Blaupunkt Berlin IQR 83 car radio set.

• I’ve made them to organize my thinking and analysis. My work has been
following a fuzzy path and that is reflected here.

• I’m sharing my journal notes in the hope that they may be useful. Information is
provided without any kind of warranty. Assume my notes are wrong.

• The system is rather complex and consists of four separate units:
• The gooseneck mounted driver interface module with the main power button,

LCD display to show radio status, and operator buttons for volume and
frequency control, containing a 4 bit microcontroller to interface to the main
control unit

• The under-dash (hidden) mounted radio and main control unit containing the
central 16 bit micro computer system with speech synthesizer, and the FM and
AM radio.

• The dash mounted stereo auto-reverse tape deck with volume, tone, fader, and
balance control buttons, and a microphone and associated electronics to enable
automatic volume control depending on ambient noise in the car

• The four channel BQB 80 booster amp connecting the system to up to four car-
speakers

• The units are interconnected through shielded cables 8-pin DIN connectors
carrying data and audio signals. Permanent power is fed from the car battery
separately to the control unit, tape deck unit, and power amp. The operator
module is powerd by the control unit through a 7-pin DIN connector.

• The system was advertised as "the worlds most expensive car radio" in 1983
when it was launched. It was preceded by the Berlin 8000 system from which the
tape deck and booster amp seems to have been carried over. The driver interface
and central computer, however, seems completely new for this version. My IQR
83 is the top level edition with speech synthesis and automatic station
identification so that's the version I'm describing here.

Started: 2023-10-28

Anders Dinsen
anders@dinsen.net

BQB 80
The booster amp is based on eight TDA2003 power amplifier chips in bridge coupling
two-and-two to form the four channels. Output power is specified to be 15W RMS per
channel, which seems realistic, though the THD curve shown on the box indicates that
10W RMS is the most which is achievable at reasonable distortion levels. That’s still a
decent power level in a car by 1980’s standards.

The schematic is pretty straight forward with each of the four channels modelled after
the same recipe.

There are speaker inputs with 4.8 and 6.3 mm tabs and inputs from the tape deck
through the 8 pin DIN connector. The speaker inputs are obviously high level, but the
DIN input seems to be high level as well. A voltage divider at the input reduces the signal
by -24 dB and -27 dB respectively for the DIN and speaker inputs. The voltage gain of
the TDA 2003 in standard coupling is 40 dB according ot the datasheet but since they are
bridged, in total, the booster probably provides sound level amplification of 13 – 18 dB.

2023-10-27
2023-11-16

Update: All electrolytes have been replaced. The 2200 uF and 220 uF electrolytes had degraded
significantly to 5-700 uF and ~150 uF respectively. The 1 uF seems ok, but was replaced. Cooling
of TDA2003 chips has been improved by using paste between them, the mica shims and the heat
sink.

I’m going to use the booster
with my 1989’s Blaupunkt
Paris until I have the Berlin
working

System Power control
• Power is controlled from the operator panel button on the right side. The button controls the positive

clock input on the one half of a 4013 flip-flop that toggles the power on-state.

• The input in pin 5 on the DIN connector and is connected through a transistor with a capacitor and
pullup resistor functioning as an inverter and debouncer.

• The button probably to connect to ground inside the panel although I have not been able to confirm
that by measurements.

2023-10-28

Starting main controller code analysis

Reset vectorReset workspace pointer

2023-10-30

• 0d5b = 0000 1101 0101 1011 … this is not a valid opcode. Well my disassembler can’t identify a single
instruction in the ROM anyway!

Swapping… how about:
• 5b0d = 0101 10 1100 00 1101 = SZCB indexed by r12 by r13
Yes that’s it. The instruction bytes seem swapped for some reason, though it’s an odd instruction to reset with…

TMS2532 pinout
Reading the eprom as a 2732 is only
valid for the first 2048 bytes

Confirmed… I need to make an adapter

Fe
at

u
re

 r
eq

u
es

t
fo

r
X

ge
cu

 p
ro

gr
am

m
er

 t
o

 s
u

p
p

o
rt

 T
M

S2
5

3
2

:
h

tt
p

:/
/f

o
ru

m
s.

xg
ec

u
.c

o
m

/a
rc

h
iv

e
r/

?t
id

-5
8

.h
tm

l

Blaupunkt schematic

This explains the odd instruction at
the reset vector as it is just a random
instruction at 008a, not 88a, but why
are the bytes of the instructions
apparantly swapped when the
vectors arent? There are no hints of
this behaviour in the TMS9981
datasheet…

The radio doesn’t work and there are some electrolytes that have leaked. I therefore needed to disassemble the radio unit completely.
This gave me access to the EPROMs and I tried to read the TMS2532 4k main EPROM

The TMS9900 series processors are big-endian. MSB is numbered 0 and comes first. LSB is numbered 15 and comes last. In the Blaupunkt
schematic, however, D0/A0 are LSB and D7/A13 are MSB, even though that doesn’t match the datasheet of the TMS9981.

Reading out the code

I made an adapter and read out the code… how is the memory map?
Chip select decoder of the circuit works like this
A13 = 0 and A12 = 0 => enable ROM, meaning that the 4K ROM is mapped from 0000-0FFF
A13 = 1 and A12 = A11 = 0 => enable RAM, meaning 256 byte RAM is mapped from 2000-3FFF

Interrupt vectors:
00000000:
2000 => RESET WP
088a => RESET PC
20e0 => INTERRUPT 1 WP
041e => INTERRUPT 1 PC
203e => INTERRUPT 2 WP
0236 => INTERRUPT 2 PC
203e => INTERRUPT 3 WP
022c => INTERRUPT 3 PC
0016 => INTERRUPT 4 WP
2074 => INTERRUPT 4 PC

This is odd?

2023-10-30

2023-10-31

Voice synth

After replacing various dead electrolytes and
reassembly, I managed to get the voice synth
to talk:

”Sender gespeichert”
”Kein ARI sender zu empfangen”

Why is the radio not working?

• At the core of the circuit is the TDA 1072 AM Receiver.
• AM PLL seems to work as frequency at PIN 10 = dialed

frequency + 450 KHz exactly
• However there is no audible signal at the audio ouptut pin

6, only noise.
• A longer aerial helps, but still no sign of an audio signal,

only noise.
• This is recorded directly from PIN 6

2023-11-01

This symbol is used in the
diagram, but I’m unsure what it

means. It’s controlled by the
computer. It could be a sensitivity

setting that I should play with?
The trimmer shown here is in the
input stage before the TDA 1072.

Empfiglichkeitsshalter:

* Sie empfangen per Suchlauf nur starke Sender (normalempfindlich)

** Sie empfangen per Suchlauf all im Empfangsebiet möglichen Sender (hochempfindlich)

Instruction manual says:

The AM radio is working weakly!

I got a very weak reception on 225 kHz, Polish 1000 kW transmitter!
I have ordered an original repair and calibration manual for the radio on eBay.

2023-11-01

Control panel serial interface analysis

There is apparantly no clock on the data lines so the communication will be running at some fixed baud rate. The serial I/O of the COP4 cpu seems to be used and is based on it generating
some interrupt. When powered on, the interrupt signal is triggered at a frequency of between 8 kHz in average. The following two paragraphs are from the COP404 data sheet:

2023-11-04 edited 2023-11-07

From this it can be concluded that the serial I/O is asynchronous
with a bit rate derived from COP4 instruction cycle frequency.
The instruction cycle time equals the crystal frequncy divided by
32 (COP404 datasheet) so it should run at at bit rate of 62.5 kHz.
The interrupt signals the bit clock.

Looking at the disassembled COP4 code, this seems plausible.
XAS instructions are used in several places to trigger
output/input of 4 bit frames. When repeated, there are 3
instructions between. How is data in to the panel handled?

Researching an alternative radio module

There are two available DAB+/FM Arduino
compatible radio modules:
• DABShield
• Keystone T4a tuner interface

DABShield:
www.dabshield.com

• UK based, own developed shield.
• Looks well supported with good guidance

and forum
• Reasonably priced at 50 GBP
• Fits directly on top of an Arduino
• Sensitivity is unknown?
• Some complain of the quality of the output

signal, but this seem to be down to loading
of the output due to small output
capacitors which will not be a problem in
my application.

Keystone/Excitron
https://excitron.be/en/products-2/dab-
project/

• A belgian project which also looks
serious.

• The T4A tuner is a commercial product.
Excitron has developed the Arduino
interface board.

• Sensitivity is good and the board
supports 3.3V Arduino interfaces, like
the Arduino DUE (ARM based).

Idea is…
• Arduino Due to replace the TMS9918

based central computer.
• DAB+/FM module replaces existing

LMKU radio
• Existing 4 bit bidirectional

asynchronous serial interface to control
panel via Arduino

• Existing TMS9918 CRU-based interface
to speech synthesizer via Arduino.

• Existing data interface to the tape deck.
This is unidirectional and probably only
carries info on volume and pause to
mute for ARI-messages

http://www.dabshield.com/
https://excitron.be/en/products-2/dab-project/
https://excitron.be/en/products-2/dab-project/

Bluetooth module LN-BT02

The LN-BT02 is ideal for integration in a car radio since it has an onboard
LM317 voltage regulator, an AUX input, a mono microphone input, and a
button board with volume and play/pause buttons.

The documentation is very sparse, but I have tested it and determined that
the AUX input is activated when blootooth music is paused so the unit can
be fitted in-line between the tuner and tape, or inside the tape unit.

It has a MUTE output which I can see becomes enabled when the bluetooth
is active. This is probably not useful. For traffic info, it is necessary to be able
to stop playing and switch to the AUX input and that is toggled when
activating the middle button S2.

There are two LED’s:
• RED - ???
• BLUE – blinks slowly when bluetooth signal is active, rapidly when et

can be connected to, and lights up when bluetooth is paused.

2023-11-09
2023-11-18

Update: I have installed the module in my Blaupunkt Paris and it
works perfectly. The AUX input is fed with a DC offset, but this does
not cause any issues. The output drives the tone control through
1uF caps. There is no noise or clicking. The module emits a gentle
beep when it connects but doesn’t interrupt radio/tape until music
starts playing over bluetooth. The volume level is ok. The
microphone is not connected to the module and call over
bluetooth must be disabled on the phone.

”10.6V” is actually 12.0V supply to the TMS9981

Power on/off control

2023-11-12

This transistor toggles
system power when the
14V battery supply drops
below 0.6V+6.8V=7.4V

While checking power supply voltages to the radio, I ran into a problem with power switching off the unit every time I
touched the 8V supply to the AM radio with my multimeter. Also, I could not switch on when I had the probe on. This
lead me to take a closer look at the power on/off control circuit.

Possible root causes:
• Mechanical issue with the power button in the control panel
• Electrical problem around zener diode D2307
• Electrical problems around the CR netowrk C2302-R2302 causing

spurious power off
• Problem with the 8V supply?

Power on/off is controlled by one
half of a 4013 dual flipflop powered
from permanent 5V supply. The
power button on the control panel
conducts with about 1.2kOhm to
ground causing the transistor to cut
off causing a high on CK2 to toggle
the flip-flop through RC network
R2301-C2301. CR network C2302-
R2302 along with protection diode
D2302 ensure system power is
turned off when the power is
initially applied.

Power-on problem 2023-11-16
The problem with the 8V supply seems to be mechanical.
However, inspecting the main connection board with the power
suply, there are several cooked electrylites that have leaked their
stuff on the board. They need to be replaced. A new problem has
developed and the system does not power on now! What’s wrong
must be investigated.

It turned out the problem was the V2201 transistor and resistors
R2201 and R2200. The transistor was bent over because of the
DIN connector to the control panel. Also the resistors were
touching each other causing a short circuit. Once this was rectified
the system could power on- and off and remain on even when
touching parts.

Reverse engineering protocols

• 2023-11-21

CRU interface

8 output bits on interface
board

Console interface Speech synt interface Radio PLL interface
Tape and volume
control interface

I am tapping into and recording the I/O from the CPU board with an USB logic
analyzer recording at 4 MHz.

This is essentially CRU interface and the data takes some work to interpret
since the data is ”noisy” with address bus activity going on at the same time.
Also detecting the timing of input data needs to be heuristic as there is no clock
for inputting data. The CPU just reads the CRU input whenever it wants to
without signalling that to the outside world.

Also the interfaces are layered as shown in the model on top so interpreting
the data needs to consider that.

Reverse engineering interfaces

2023-11-21

I am tapping into and recording the eight yellow marked signals. My plan is to
write a C program that interprets the data.

The table below outlines the CRU I/O connections to interfaces. All interfaces
are via shift registers. The shcematic on the lower right shows the 74LS259-
based CRU out decoder and is redrawn from the schematics.

I know that the interrupt from the operator panel is just a single interrupt per
keypress.

CRU
PORT

IN OUT

0 ~POWER ON ENA0 = Enable SR IF TM5100 speech synthesizer

1 DATA IN ENA3 = ARI decoder

2 Operator panel DATA IN ENA5 = PLL

3 N/C ENA4 = Tape and various status inputs

4 N/C ENA1 = Operator panel

5 N/C ENA2 = Output MUX + cassette/volume

6 POWER RESET DATA CLOCK

7 INTERRUPT=L DATA OUT

Speech synthesizer interface

The TMS 5100 interface consists of a 4094 shift register connected to the CRU decoder through three
lines: The dedicated ENA0 and the system-shared DATA OUT and CLOCK lines. A 4504 level converter
converts the TTL levels to the 9V P-MOS levels needed by the TMS 5100.

The schematics on the right shows the interface redrawn by me. The code below shows the disassembly
of the CPU procedure used to output the 4 bits of command plus PDC and CS signals to the speech
synthesizer. Signals are explained like this in the TMS 5100 info I have.

XOP4 LIMI >0001 ; pc:>00ee w:>0300 Send a command to the speech synthesizer interface

 MOVB *r11+,r5 ; pc:>00f2 w:>d17b R11 (XOP parameter) points the command to send

 MOVB *r11+,r4 ; pc:>00f4 w:>d13b

 SRL r4,8 ; pc:>00f6 w:>0984

 MOV *r11+,r1 ; pc:>00f8 w:>c07b

 MOV *r11,r12 ; pc:>00fa w:>c31b

 SBZ 0 ; pc:>00fc w:>1e00 ENA0 = 0 => get ready to strobe data out

 MOV r11,r9 ; pc:>00fe w:>c24b

 LI r12,>0000 ; pc:>0100 w:>020c

 LI r2,>0001 ; pc:>0104 w:>0202

 MOV *r1+,r3 ; pc:>0108 w:>c0f1

 COC r2,r3 ; pc:>010a w:>20c2 Shift out a bit

 JEQ >0112 ; pc:>010c w:>1302 Bit is a ZERO

 SBZ 7 ; pc:>010e w:>1e07

 JMP >0114 ; pc:>0110 w:>1001

 SBO 7 ; pc:>0112 w:>1d07 Bit is a ONE

 SBO 6 ; pc:>0114 w:>1d06 Trigger the clock = 1

 SBZ 6 ; pc:>0116 w:>1e06 Clock back to 0

 DEC r4 ; pc:>0118 w:>0604

 JEQ >0122 ; pc:>011a w:>1303 Are we done?

 SLA r2,1 ; pc:>011c w:>0a12

 JEQ >0104 ; pc:>011e w:>13f2

 JMP >010a ; pc:>0120 w:>10f4

 SBZ 7 ; pc:>0122 w:>1e07 We’re done…

 MOV *r9,r12 ; pc:>0124 w:>c319

 SBO 0 ; pc:>0126 w:>1d00 ENA0 = 1 => strobe data out

 MOVB r5,r5 ; pc:>0128 w:>d145

 JEQ >012e ; pc:>012a w:>1301

 SBZ 0 ; pc:>012c w:>1e00

 RTWP ; pc:>012e w:>0380 Return

2023-11-26

Bit Function

0 CTL1

1 CTL2

2 CTL4

3 CTL8

4,5 Unused

6 PDC = processor data clock

7 CS = chip select

Dec CTL8 CTL4 CTL2 CTL0 Description

10 1 0 1 0 Start talking. Play the bitstream from the ROM.

0 0 0 0 0 NOP. No operation, do nothing.

14 1 1 1 0
Read status. At the next second pulse on PDC, bit
0 (CTL1) becomes an output and indicates
whether the synthesizer is talking or not.

2 0 0 1 0 Load 4 address bits in the ROMs.

8 1 0 0 0 Read a bit from the ROM.

4 0 1 0 0 Read 4 bits register with data from the ROM.

Source: http://furrtek.free.fr/index.php?a=speakandspell&ss=4&i=2

Write # Address bits set

1 A3~A0

2 A7~A4

3 A11~A8

4 CS1,CS0,A13,A12

5 ignored,ignored,CS3,CS2

To set the address, we have to make
5 writes, to set 18 bits + 2 which are
ignored. After each write, an
internal pointer advances 4 bits to
point to the next ones in the address
register. This pointer is reset to zero
only after a bit read.

Documentation of the TMS5100 command
set has been lost but a reverse engineering
effort of the Speak-and-Spell play-tool
(which it was used in) has been done by
furrtek. From this, the below has been
derived, so I now know what to look for. I
need to find the addresses of words and
sentences in the TMS6100 ROM.

http://furrtek.free.fr/index.php?a=speakandspell&ss=4&i=2
https://github.com/furrtek

Analyzing actual speech synthesizer commands

I have analyzed data from the logic analyzer using a custom C-program that reads the raw data dump from the logic analyzer, extracts CRU-OUT data and generates a listing of events and
data. This has allowed me to extract a series of data being sent to the TMS5100.

868904us E0=c4 TMS5100(CS=1 PDC=1 CTL=2) ; Load TMS6100 bit address in the next 5

 874088us E0=c9 TMS5100(CS=1 PDC=1 CTL=9) ; A3-0 = 9

 879289us E0=c4 TMS5100(CS=1 PDC=1 CTL=2) ; A7-4 = 2

 884492us E0=c8 TMS5100(CS=1 PDC=1 CTL=1) ; A11-8 = 1

 889704us E0=c0 TMS5100(CS=1 PDC=1 CTL=0) ; CS0,CS1,A13,A12 = 0

 900146us E0=c1 TMS5100(CS=1 PDC=1 CTL=8) ; CS3,CS2,n,n = 8

 905284us E0=c5 TMS5100(CS=1 PDC=1 CTL=a) ; Start talking command

…

1157562us E0=c7 TMS5100(CS=1 PDC=1 CTL=e) ; Read status?

…

1716306us E0=c0 TMS5100(CS=1 PDC=1 CTL=0) ; No operation

• This shows that my analysis of the circuit is correct,
• The TMS5100 uses the same command set as the Speak&Spell analyzed by

furrtek.
• The byte at 0129 probably says ”Sender gespeichert”.
• CS3=1, CS2=CS1=CS0=0.
• The read status commands are sent until the synthesizer has ended talking.
• I do not know why it sends a No operation later?

With this information, it should be possible to try all 16K addresses to see what it
says once I have an arduino hooked up to emulate the CRU interface.

2023-12-03

Volume control circuit elements 2023-12-03

Volume control
shift register

Volume control
D-A conversion

resistor
network

Volume and tone
control IC’s

AF input from
radio

AF input from
tape deck

AF output to
booster amp

Channel select and volume control analysis

Channel select
shift register

Channel select
switch

Channel select and volume control appears to the CPU to happen over the
same shift register, but it is in fact distributed across two shift registers
sharing the same data, clock, and strobe lines: Channel select happens in
the head unit and volume control is embedded in the tape deck.

Q8,Q7 = 00binary => floating input
Q8,Q7 = 01binary => radio
Q8,Q7 = 10binary => speech synth
Q8,Q7 = 11binary => radio

The 220n capacitor on the Q8 output means that there is a short break in
the sound when it switches.

Latched out with ENA2

Channel select

2023-12-03
Volume control

The ladder resistor network is explained here: https://en.wikipedia.org/wiki/Resistor_ladder
The inverter made by the input resistor reverses the output vs value. Least significant 5 bits =>
volume level. Volume is controlled by two TDA4290 IC’s. The 0-5V output from the DAC is further
processed with input from the ambient sound microphone before being fed to the 4290’s. 0V output
gives max attenuation in the TDA4290.

449257us E2=9f DOUT=0 VOL(LVL=31 CH=2)

 6795583us E2=45 DOUT=0 VOL(LVL=05 CH=1)

 6807604us E2=65 DOUT=0 VOL(LVL=05 CH=1)

 6819624us E2=55 DOUT=0 VOL(LVL=21 CH=1)

Example data captured and decoded from the logic analyzer
CRU output:

https://en.wikipedia.org/wiki/Resistor_ladder

INT2 LI r12,>0004 ; Operator panel interrupt: READ DATA

I3E LI r8,>03e8 ; r8 = 1000

INT2A DEC r8 ; do r8 = r8 - 1

 JEQ INT2H ; * if r8 = 0 timeout???

 TB 0 ; * read CRU bit 0 power on???

 JEQ INT2A ; until CRU bit 0 = 1

 LI r10,>0006 ; r10 = 6

 LI r8,>0008 ; r8 = 8

INT2B DEC r10 ; 6 cycle delay

 JNE INT2B ; *

 TB 0 ; read CRU bit 0 power on???

 JEQ INT2H ; if CRU bit 0 <> 1 then

 LI r10,>000b ; * 11 cycle delay

INT2C DEC r10 ; * do delay *

 JNE INT2C ; * * *

 SRL r7,1 ; * * shift R7 right (what is in R7???)

 TB 0 ; * * read CRU bit 0 power on????

 JEQ INT2D ; * * if CRU bit 0 = 0

 ANDI r7,>7fff ; * * * r7 = r7 AND 0111111111111111

 JMP INT2E ; * * else

INT2D ORI r7,>8000 ; * * * r7 = r7 OR 1000000000000000

INT2E DEC r8 ; * * r8 = r8 - 1

 JEQ INT2F ; * *

 LI r10,>000a ; * * 10 cycle delay

 JMP INT2C ; * until r8 = 0

INT2F LI r10,>000b ; * 11 cycle delay

INT2G DEC r10 ; * * delay

 JNE INT2G ; * * delay

 TB 0 ; * read CRU bit 0 ???

 JEQ INT2I

INT2H CLR r7

INT2I LI r12,>0000

INT2J TB 7

Operator panel input -> CRU input oddity

There is a strange thing that according to the schematics, the operator panel input goes to CRU bit 2,
however, browsing around the code, I realized there is no instruction in the code to test that bit. The
Interrupt routine instead reads from CRU bit 0 which according to the diagrams are connected to the
power control circuit.

So either the code doesn’t work (which it does), the disassembler is wrong (it isn’t), or the schematic
diagram is wrong (more likely).

By the way, it looks like the code waits for a stable start bit = 1 and then reads 8 databits so it seems like
a normal asynchronous serial interface with a fixed baud rate.

2023-11-27

Baud rate calculation requires that I handtrace the
instructions executed and compares with the
instruction execution times in TABLE 4 in the
TMS9981 data sheet….

Operator panel communication 2023-12-17

I built a connector to tap off the data between the operator panel and the main
unit. The interface is indeed normal UART both ways, running at 2400 baud, 8
bits, one start bit.

There is data both with the enable signal from the main unit being high and
low, but it seems it’s low when there are data being sent to the LCD. Perhaps
it’s high with other data, e.g. LED’s? Data to the LCD is ascii by the way.

Keypresses trigger an interrupt (as expected) and some code indicating which
key is pressed. I haven’t decoded the logic yet.

Data sent to the display right after power-on…
visible UART data converts to this string:
…3.9U <NUL>93.9<CR><LF>…

	Slide 1: Journal notes on Blaupunkt Berlin IQR83 restoration
	Slide 2: BQB 80
	Slide 3: System Power control
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

